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A self-consistent perturbation procedure for calculating molecular ground state quantities is 
presented in which the zero-order wave function is built up of strictly localized orbitals. The 
method involves the construction of a fictitious unperturbed Hartree-Fock matrix, the solution 
of which is known in terms of localized orbitals and the pertinent perturbation. The general 
formalism uses a density matrix approach and is applied to the INDO semiempirical all-valence 
electrons SCF calculations of a few molecules in order to obtain information on the validity and 
limitations of the procedure. 

In recent years considerable attention has been paid both to developing techniques capable of 
analyzing electronic wave functions from the standpoint of localizability of electron groups and 
to their applications to particular molecules and solids1

. The emphasis has mostly been directed 
to the a posteriori analysis of various kinds of wave functions, and, as a result of these studies, 
there is no doubt that the canonical molecular orbitals have their equivalent counterpart re
presented by very well localized one-electron functions. Relatively less effort has been devoted 
to studying methods making explicit use of the localized and transferable property of these 
orbitals, particularly to numerical applications of such methods. Depending on the level of 
sophistication there are various ways to incorporate the presumption of electron localization into 
the theories. Within the semiempirical one-electron approaches, methods making a straight use 
of the strictly localized orbitals (SLO's) as describing the system of electrons2 

-? are the closest 
quantum chemical representation of the classical view of bonding, but, for certain purposes, 
they mean an oversimplification of the problem. Further, suitable applications of the idea of 
constructing the molecular wave function from molecular fragments have been successfully used 
in a number of theories and computations8 

-
11

. Also, in m~ny-electron theories the idea of using 
localized orbitals to simplify perturbation and configuration interaction treatments has been 
many times advocated 1 ' 12 -

16
. 

In contrast to these theories we present a self-consistent perturbation approach in 
which we use a local orbital description of the system for calculating ground state 
properties' of molecules to comparable accuracy ofHartree-Fock calculations. Using 
the INDO Hamiltonian17 we show numerical applications of the SC perturbation 
theory18 - 28 to a number of molecules and discuss the results from the viewpoint of 
a comparison with the pertinent SCF solutions and transferability of SLO's between 
molecules containing identical atomic groupings. 
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Self-Consistent Perturbation Theory 

We consider a system of2n electrons described by a single-determinant wave function 
with doubly occupied MO's Vi• each of which is expressed as a linear combination 
of m orthonormal AO's, 1. = (1.1, 1.2• ••• 1.m), 

(1) 

In Eq. (J) and in the following we are using the customary matrix notation (compare 
·e.g.43

-
45

). The correspondjng energy expectation value E 0 can be expressed in terms 
of the atomic representation 12 

E0 = 2Tr{hr0 } + Tr{g(r0) r0}, (2) 

where h and g(r0) refer to the one-electron part of the pertinent Hamiltonian and 
to the interaction energy of the electrons, respectively, and r 0 is the first-order density 
matrix, 

(3) 

Before proceeding further, in addition to r0 projecting onto the manifold of occupied 
orbitals12

•
29

, let us introduce its complement q0 , q0 = I - r0 and the projection 
matrices 

r~> = lt/t;) (t/t;j ' 

q&k) = ltJtk> (t/tkl (4) 

asso:::iated with individual MO's, where the indices i and k refer to the occupied and 
virtual orbitals, respectively. 

If the MO's are the solutions of the Hartree-Fock equation 

(f(r0) - s) c = 0, (5) 

where f(r0) = h + g(r0), s = diag (e1, e2 , ... em) and c = (c1, c2 , ... em), E0 corres
ponds to the variationally optimized value. The solution of Eq. (5) can be obtained 
in such a way that, instead of seeking the roots of the pertinent secular determinant, 
we are looking for the singularities of the determinant of the matrix 

(6) 

considered as a function of the complex variable30 z. This kind of formulation permits 
a simple expression of the effect of single-particle perturbation upon the original 
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system in preserving self-consistency, since if f(r0) changes to F(r) = f(r) + V, the 
resolvent (or Green's function) of the perturbed system can be expressed by means 
of the Dyson equation30 

G(z) = (zl - F(r)t 1 = I G0(z) (WG0(z))", (7) 
:u=O 

where W = V + g(M) by using the property31 of g(r), g(r0 + M) = g(r0) + g(M). 
Since the perturbed first-order density matrix r can be obtained as the sum of residues 
of the resolvent G(z) inside the closed contour in the complex plane enclosing eigen
values associated with occupied orbitals ("Coulson contour")32

-
34

, it is possible to 
cast r into the form of a series 

(8) 
where 

(9) 

It was shown35 that by using this resolvent operator formalism it is possible not 
only to rederive the basic formulae of the Hartree-Fock perturbation theory, but also 
to enlighten the relations between the SC perturbation theory and both the many
electron theory and the regular Hartree-Fock formalism. For instance, after inte-' 
gration of the expression (8) for u = 1, the first-order contribution becomes 

rl = L L (e; - ekt 1 (r~~Wq~ + q~ Wr~). (10) 
r k 

Thus we get the first-order correction to the density matrix which is in full agreement 
with McWeeny's derivation19

•
21 based on the projection operator method. 

Perturbation Treatment for Localized Orbitals 

Suppose we have available a first-order density matrix r0 which, e.g., we have con
structed by means of orthonormal SLO's q, 

:'1= ('11• 'b ···'1n) = zC, (11) 

representing bonds and lone pairs of the molecule under consideration. We are also 
given h and g(r0), F(r0) = h + g(r0), and in order to make use of the perturbation 
formalism described above, we have to set up f(r0), so that12 

(12) 
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where 

f(r0 ) = F(r0) - V. (13) 

Thus, we have to decompose F(r0) into a fictitious unperturbed Hartree-Fock matrix, 
the solution of which is known in terms of the first-order density matrix r0, and the 
perturbation V. This may be achieved by the application of the projection operator 
method19

•
36 on Eq. (12) which yields: 

r0 F(r0) r0 - r0 F(r0) r0 = r0 V r 0 - r0 V r0 , 

r0 F(r0 ) q0 = r0 V q0 , 

q0 F(r0) r0 = q0 V r0 , 

qo F(ro) qo - qo F(ro) qo = qo V qo - qo V qo · (14) 

We now observe that r0 Vr0 and q0 Vq0 are arbitrary and, therefore, we may put 

(15) 

to satisfy Eqs (12) and (13). Generally, this kind of arbitrariness of dividing F(r0) into 
two parts may be used for affecting the perturbation treatment in view of improving 
the convergence and complexity of the solution16

•
37

• Particularly, using Eq. (15) we 
retain the symmetry off(r0) with reference to F(r) or, in other words, the eigenvectors 
c corresponding to f(r0) are symmetry orbitals for the molecular symmetry group. 
The diagonalization of f(r0) yields eigenvalues eu, u = 1, .. n, needed for the cal
culation of the perturbation terms of the kind (10). 

It is note-worthy that the unitary transformation matrix relating the eigenfunctions 
1/1 (which are expected to resemble considerably the exact MO's of F(r)) to the SLO's 
can be simply written as the product of two matrices, 

, =1/J(cc), (16) 

where c denotes the transpose of c. Hence, we may easi ly construct a pseudopotential 
equation the solution of which are the SLO's originally introduced into the scheme. 
Consequently, it may be conjectured that by means of the procedure described above 
a useful first approximation to self-consistent pseudopotentials38 

-
42 in molecules 

leading to localized orbitals might be obtained. 

Numerical Applications 

The procedure described above has been applied to the INDO Hamiltonian in its 
original version 17

• It is believed this will yield a proper insight into the features of 
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the suggested perturbation treatment, particularly with respect to the solution of 
Eq. (10) and the accuracy of the truncated perturbation expansion. Fortunately, 
within the INDO approximation the basis set of AO's is orthonormal, as it has been 
assumed in the theoretical consideration. Of course, non-orthogonal basis sets of 
AO's could be admitted on the same footing after their symmetrical orthogonalization. 

As the starting point for the calculations we used the SLO's43 defined as normalized 
one-centre functions lfJ A and two-centre functions flAB = q( lfJ A + bq18 ) describing lone 
pairs and bonds, respectively. Capitals, qJ's and b denote the centres (atoms), hybrid 
orbitals (HO's) and the bond polarity parameter, respectively. Recently, there have 
been developed procedures for constructing both optimum hybrids and optimum 
bond orbitals at given hybrids, based on the maximization of the projection of 
localized bond orbitals onto the occupied SCF space44

•
45

• From now on, if we refer 
to optimized quantities, optimization with respect to the above mentioned criterion 
of maximum projection will be meant. In order to test the convergence and the ef
fectiveness of the perturbation procedure, various sets of SLO's have been used, 
differing in the closeness with which the SLO-approximation approaches the "exact" 
SCF solution. Thus, besides using optimized hybrids, calculations based on "directed" 
HO's46 have been carried out. The "directed" HO's for second row elements have 
been defined in the following way: if q equivalent HO's on a given atom are to be 
established, at first, the q HO's of the form (qt 112 [(2s) + (q - 1)112 (2p)] are 
constructed, where (2p) stands for a normalized linear combination of (2p) AO's 
representing the particular spatial orientation, either along the given bond or of the 
hypotherical lone pair. Since we require orthonormal orbitals, we define those 
orbitals as the final ones which are achieved through the succesive Lowdin's sym
metric orthogonalization. HO's defined in this way are close to the classical ones and 
can be easily constructed according to the geometrical arrangements in the molecule. 
Four possibilities of forming the SLO's have been considered: 

(a) optimized HO's, optimized SLO's SCF n MO's 

(b) directed HO's, optimized SLO's, SCF n MO's 

(c) directed HO's, fixed (transferable) SLO's, SCF n MO's 

(d) directed HO's, fixed (transferable) SLO's, localized n orbitals. 

Let us add a few remarks to the numerical solution of Eq. (10). Bearing in mind 
the remark to Eq. (10), substituting for W, and in view of Eq. (15) we may conve
niently rewrite Eq. (10) in the form 

(17) 
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TABLE I 

Molecular Energies (mol. en., a.u.) and Gross Charges on the Hydrogen Atom (GC, 10-4 units of the proton charge) Obtained by SCF 
Calculation and SC-Perturbation Treatments Based on Various Zero-Order Functions; Perturbation Energies Are Given Relative to the SCF 
Value 

Type of 
Methane Acetylene Ethylene Ethane 

calculation mol. en. GCH inol. en. GCH mol. en. GCH mol. en. GCH 

SCF 
''exact'' - 9·86091 -95 -14·83615 537 - 16·54941 -3 -18·30372 -185 

n 0. order 0·00566 -95 0·02267 543 0·05831 - 3 0·05664 - 188 0 

[ (a) 1. order - 0·00774 -94 -0·3088 541 -0·08228 - 28 - 0·07719 - 195 

g' purif. 0 - 95 0 535 0 3 0 -182 

n 
0. order 0·02835 591 0·06679 5 0·05905 -187 

::r (b) 1. order -0·03948 572 - 0·09402 - 22 -0·08029 - 195 
0 purif. - 0 < 527 0 1 0 - 182 

n 
::r 0. order 0·00629 - 198 0·02879 512 0·06685 0 0·05920 - 198 
~ (c) 1. order -0·00849 -94 -0·03987 573 -0·09407 -22 -0·08042 -195 
n purif. 0 -95 0 527 0 1 0 -182 s 
~ fixed corr. -0·00432 - 99 -0·01947 622 - 0·04564 63 -0·04103 - 140 

purif. 0·00040 -99 0·00203 596 0·00474 68 0·00384 - 136 

~ 
-
~ I~ 
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where [ A]1k = [ A]k1 = ci Ack, if A is Hermitian (A = A+) and the c/s are real. 
Thus, r 1 equals the sum of two matrices, the first being fixed and the second, r 1 -

dependent. The solution of Eq. (17) has been obtained iteratively, starting by taking 
r 1 = 0 in the right-hand side of Eq. (17), as was suggested by Me Weeny19• From 
numerical evidence it has been concluded that it is sufficient to impose the convergence 
criterion upon the matrix diagonal elements, since the off-diagonal corrections are 
smaller than the diagonal ones by the order of magnitude. Requiring the difference 
of two matrix elements of two successive iteration steps to be smaller than 5. 10-S, 
the average number of iteration steps has ranged from 6 to 8. Moreover, it has been 
found that the principal contribution to r 1 comes from the fixed part; however, the 
second one is not negligible. 

The knowledge of the first-order perturbed density matrix suffices to determine the 
energy to the third order47

, and, therefore, it might be conjectured that by limiting 
ourselves to computing r 1 we might obtain results of sufficient accuracy. 

The perturbed density matrix including the first-order correction r 1 is idempotent 

TABLE II 

Molecular Energies (a.u.) Obtained by SCF Calculation and SC-Perturbation Treatments Based 
on Various Zero-Order Functions; Perturbation Energies Are Given Relative to the SCF Value 

Type of Propylene Butadiene 

calculation staggered eclipsed trans cis 

SCF "exact" -25·01295 -25·01082 - 31 ·71463 - 31 ·70845 

0. order 0·12183 0·11951 0·13493 0·13904 
(a) 1. order - 0·16885 -0·16642 - 0·18648 - 0·19155 

pur if. 0·00002 0·00003 0·00001 0·00003 

0. order 0·13193 0·12969 0·15226 0·15699 
(b) 1. order -0·18355 -0·18116 - 0·21199 -0·21833 

purif. 0·00003 0·00003 0·00002 0·00003 

0. order 0·13117 0·12891 0·15113 0·15583 
(c) 1. order -0·18275 -0·1 8038 -0·21105 - 0·21735 

purif. 0·00003 0·00002 0·00003 0·00004 

0. order 0·13088 0·12863 0·19882 0·19979 
(d) 1. order -0·18295 - 0·18054 - 0·28254 -0·28613 

pur if. 0·00005 0·00003 0·00002 0·00004 

fixed corr. -0·09082 -0·08855 -0·13739 -0·13580 
purif. 0·00887 0·00896 0·01403 0·01485 

Collection czechoslov. Chern. commun. (Vol. 39] (1974 ] 



2884 Polak: 

TABLE III 

Atomic Gross Charges (10- 4 units of the proton charge) and Dipole Moments (Debyes) for 
Propylenes Staggered and Eclipsed Obtained by SCF Calculation and SC-Perturbation Treat
ments Based on Two Kinds of Zero-Order Functions 

Type of 
calculation 

SCF "exact" 

C l C2 C3 HI H2 H3 H4 H5 H6 Dipole 
moment 

staggered(!) 619 331 -138 -84 - 68 - 170 -170 - 171 -149 0·2578 

0. order 
(a) 1. order 

pur if. 

0. order 
(d) 1. order 

purif. 

fixed corr. 
purif. 

SCF "exact" 

552 346 - 56 -58 - 54 - 199 -199 - 167 - 163 0·0821 
594 402 - 90 -76 - 71 - 199 - 199 - 184 -177 0·1599 
659 329 - 211 -83 -60 -160 - 160 - 178 -136 0·3170 

594 0 0 -198 -198 -198 0 0·0718 " 
602 394 - 93 -71 -71 - 203 -203 -188 - 166 0·1646 
666 335 -206 -90 -66 -161 - 161 -179 -1 37 0·3258 

544 124 -199 
585 106 - 254 

31 
17 

32 - 171 -171 -157 
28 - 150 - 150 -155 

- 34 
- 28 

0·0792 
0·1434 

eclipsed(IJ) 619 334 - 141 -77 -70 -148 -148 -215 - 155 0·2053 

(a) 

(d) 

0. order 
1. order 
pur if. 

0. order 
1. order 
pur if. 

552 352 -62 -53 - 58 - 180 -180 -204 -166 
59] 405 -95 -70 -72 -183 -183 -213 -181 
658 331 -211 -75 -60 -139 - 139 -220 -145 

594 0 0 0 0 - 198 -198 - 198 0 
597 397 - 97 -66 -72 -1 87 -187 - 216 -170 
665 338 -207 -82 -67 - 140 -140 - 221 -145 

0·0927 
0·1247 
0·2523 

0·0718 
0·1294 
0·2624 

fixed corr. 539 123 - 200 
pur if. 581 I 05 - 251 

34 
21 

32 - 162 - 162 -171 - 34 0·0666 
28 - 139 - 139 -175 -30 0·1050 
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to first order. Therefore, it is both interesting and important to determine the extent 
to which this quasi-idempotency affects the calculated quantities. To define a strictly 
idempotent matrix r' close tor = r 0 + r 1 it is sufficient to form a new set of m vectors 
diagonalizing rand to use those n vectors for the construction of r' whose associated 
eigenvalues are close to 1. We note, of course, that this approach resembles the kind 
of analysis applied to many-electron wave function from the viewpoint of natural 
orbitals29

• 

It should, however, be born in mind that Eq. (17) represents a nonlinear problem 
and that the difficulties with the iteration process of solving the regular SCF equations 
(5) are thus partially retained. The remedy for this situation is in decoupling Eq. (17), 
as it has been done within perturbation calculations on atomic structures27

•
28

• We 
shall define the decoupled solution of Eq. (19) as that which equals the fixed part 
(r 1 - independent) of the right-hand side of Eq. (17). 

RESULTS AND DISCUSSION 

The SC perturbation approach described in the previous section has been applied 
to a number of hydrocarbons and to molecules H 20, HCN, NH3 and H 2CO as 
listed in Tables I through V. The equilibrium geometries for the hydrocarbons were 
taken the same as in paper44

• For the molecules H 20 and H 2CO we have used the 
data d(O-H) = 0·9584 A, ~ HOH = 104-45° and d(C- 0) = 1·22 A, d(C- H) = 
= 1·08 A, ~ HCH = 120°, respectively. The zeroth order, perturbed and purified 
perturbed first-order density matrices - corresponding to the coupled and event. 
decoupled (i.e. with fixed correction) solution - have been employed for the cal
culation of molecular ground state energies and dipole moments, and analyzed by 
presenting gross charges on atoms. For the sake of comparison, in all tables are also 
given values referring to the corresponding INDO SCF calculation which represents 
the exact solution of the problem to which the SC perturbation treatment is applied. 

Our results for the selected group of hydrocarbons are displayed in Tables I- IV. 
Among the four versions of constructing the starting density matrix r 0 , as they have 
been introduced above, the first two ((a) and (b)) rely upon the knowledge of the 
SCF solution of the problem under consideration. The listed perturbation calculation 
results show an excellent agreement with the "exact" quantities, especially for the 
total molecular energies obtained by means of the purified density matrices. It is 
note-worthy that the purification process does not improve substantially the data 
related to the charge distribution in molecules. 

On grounds of analyzing optimized SLO's of various C- H and C- C bonds we 
have found that the polarity parameter in the bond orbital q[(C) + b(H)] can be well 
approximated by setting b equal to 1·02, 1·00 and 0·95 depending on whether the 
hybrid orbital (C) located on the carbon atom is of the type sp3

, sp2 and sp, respec
tively, and that all C-C bonds in our investigated molecules can be described by 

Collec tion Czechoslov. Chern. Commun. (Vol. 39] (1 974) 



2886 Polak: 

bond orbitals with46 b = 1·0. q orbitals determined in this way and n orbitals 
taken from the SCF calculation have been the starting orbitals for perturbation 

TABLE IV 

Atomic Gross Charges (10- 4 units of the proton charge) and Dipole Moments (Debyes) for 
Butadienes trans and cis Obtained by SCF Calculation and SC-Perturbation Treatments Based 
on Two Kinds of Zero-Order Functions 

Type of C1 C2 H1 H2 H3 Dipole 
calculation moment 

SCF "exact" 
trani1> -90 328 . -85 -23 -130 0 

0. order -53 255 -57 -11 -134 0 
(a) 1. order -43 322 -87 -37 -155 0 

purif. -130 371 -92 -23 -126 0 

0. order 0 0 0 0 0 0 
(d) 1. order -62 327 -78 -39 -149 0 

pur if. -119 375 -99 -30 -127 0 

fixed corr. -219 184 24 48 -38 0 
pur if. -240 221 9 47 -37 0 

SCF "exact" 
cii1> . -106 351 -90 -163 0·1616 

0. order -86 287 -65 22 -159 0·0706 
(a) 1. order -71 344 -93 -4 - 175 0·1299 

purif. -136 384 -96 6 -158 0·2035 

0. order 0 0 0 0 0 
(d) 1. order -82 337 -91 - 6 -159 0·1673 

purif. -122 393 -108 -163 0·2107 

fixed corr. -223 176 12 67 -32 0·0919 
purif. -239 219 -3 65 -43 0·1188 

C4 (C4) 

" ) ' ' 
H3 ~1-1

2 

\ 
HI 
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C') TABLE V Gt 
::r Molecular Energies (mol. en., a.u.), Dipole Moments (dip. m., Debyes) and Gross Charges (GC, 10-4 units of the proton charge) Obtained 0 
0 ~ 

~ by SCF Calculation and SC-Perturbation Treatments Based on Two Kinds of Zero-Order Functions; Perturbation Energies Are Given Relative ::s 
0. 

to the SCF Value rn 
C') S" 
::r ct 
~ 

Type of SCF (a) (b) ~ 
C') 0 

'0 
~ calculatiom ''exact'' 0. order 1. order purif. 0. order 1. order purif. fixed corr. purif. a § ~f !' 

~ 
mol. en. -19·01424 0·00037 -0·00060 0 0·04041 -0·08478 0·00005 -0·01408 0·00879 

H 2 0 dip. m. 2·1816 2·2139 2-1817 2·1816 2-3243 2-4196 2-1475 2·3800 2·3174 
:g GCO . -3340 -3341 -3341 -3340 -3718 -3615 -3201 -3941 -3841 

~ 
mol. en. -18·39993 0·02093 -0·03141 0·00004 0·04057 -0·07214 0·0001.8 -0·01953 0·00629 

HCN dip. m. 2·4556 2·6349 2·5527 2·3962 2-8245 2·6890 2·3128 2·6383 2·5245 
GCC 905 967 885 819 1165 921 710 860 788 
GCN -1399 -1531 -1435 - 1299 -1770 -1513 -1168 -1498 -1387 

mol. en. -13·36252 0·00292 - 0·00415 0 0·00908 -0·01545 0·00001 - 0·00433 0·00143 
NH3 dip. m. 2·0148 2·1287 2.0148 2·0147 2·0061 2·0509 2·0111 2·0026 1·9936 

GCN - 2529 -2532 -2531 - 2528 -2584 -2575 -2514 -2705 - 2692 

mol. en. -25·73678 0·06675 - 0·12757 0·00225 0·10655 - 0·21384 0·00442 - 0·06248 0·01371 
H2 CO dip. m. 1·9993 2·7909 2·2359 1·5403 3·0050 2·3268 1·3504 2·4506 2·0873 

GCO -2381 -3293 -2605 -1595 -3571 -2699 -1305 -2661 -2149 
GCC 3285 3759 3314 2664 4044 3469 2463 2990 2648 

I 
N 
QC) 
QC) 
-...l 
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calculations denoted by (c), the results of which practically coincide with those 
obtained by means of version (b). 

Finally, version (d) of determining r 0 has been chosen without any relationship 
to the SCF solution at all. In this treatment the sigma orbitals equal those used in 
version (c) and the pi orbitals are bond orbitals with b = 1·0, located at sites indicated 
by structural formulae. Of course, among all sample calculations this type of approx
imation exerts a salient influence on the zero order description of both butadiene 
isomers. The crudeness of the approximation manifests itself in the corresponding 
energy expectation values (Table II) and charge distributions (Table IV), the latter 
being uniform with respect to all atoms in both butadiene molecules. Carrying out 
the perturbation procedure up to first order we obtain again almost "exact" molecular 
energies and charge distributions which compare favourably with "exact" ones. 

Such a good convergence behaviour of the perturbation calculations on hydro.
carbons might raise the suspicion that it is due to the small polarity of these molecules. 
Therefore, analogous calculations have been performed for a few molecules with 
a pronounced redistribution of charge within the system relative to the atoms and 
a large dipole moment. Table V shows the molecular energies, dipole moments and 
charge distributions obtained in these calculations for water, hydrogen cyanide, 
ammonia and formaldehyde. Note that the deviations of the perturbation calculation 
results from the reference SCF calculation values are of the same order of magnitude 
as in the case of hydrocarbons with the exception of H2 CO for which the SLO 
description represents a poor zero-order approximation. 

It is also note-worthy that even the decoupled solution of the first-order contribution 
(i.e. the fixed correction) to the density matrix, calculated for the less accurate zero
order functions, yields physical quantities of fairly good accuracy when compared 
with the coupled solution. Thus, the decoupled solution hands us approximate SCF 
physical quantities on a plate without making an iterative process. 

CONCLUSIONS 

We have found that the self-consistent perturbation treatment of the electronic 
structure of molecules based on localized orbitals including first-order changes in 
the Fock-Dirac density matrix yields ground state expection values of satisfactory 
accuracy when compared with reference SCF values and thus represents an alternative 
SCF solution of the given problem. Therefore in general, this approach might be 
of use for studying the convergence properties of the iteration solution of the regular 
SCF pseudo-eigenvalue problem. 

It is also believed that the theoretical framework of the method developed in this 
paper allows for a simple study of pseudopotentials in molecules leading to localized 
orbitals. 
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